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**The ability of cells to receive and act on signals from beyond the
plasma membrane is fundamental to life.

s*Bacterial cells receive constant input from membrane proteins that act
as information receptors, sampling the surrounding medium for pH,
osmotic strength, the availability of food, oxygen, and light, and the
presence of noxious chemicals, predators, or competitors for food.

**These signals elicit appropriate responses, such as motion toward food
or away from toxic substances or the formation of dormant spores in a
nutrient-depleted medium.

sIn multicellular organisms, cells with different functions exchange a
wide variety of signals.

**Plant cells respond to growth hormones and to variations in sunlight.



s*Animal cells exchange information about the concentrations of ions
and glucose in extracellular fluids, the interdependent metabolic
activities taking place in different tissues, and, in an embryo, the correct
placement of cells during development.

s*In all these cases, the signal represents information that is detected by
specific receptors and converted to a cellular response, which always
involves a chemical process.

**This conversion of information into a chemical change, signal
transduction, is a universal property of living cells.

+*Signal transductions are remarkably specific and exquisitely sensitive.



s»Specificity is achieved by precise molecular complementarity between
the signal and receptor molecules, mediated by the same kinds of weak
(noncovalent) forces that mediate enzyme-substrate and antigen-

antibody interactions.
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s*Multicellular organisms have an additional level of specificity, because
the receptors for a given signal, or the intracellular targets of a given
signal pathway, are present only in certain cell types.



s*Thyrotropin-releasing hormone, for example, triggers responses in the
cells of the anterior pituitary but not in hepatocytes, which lack
receptors for this hormone.

s*Epinephrine alters glycogen metabolism in hepatocytes but not in
adipocytes; in this case, both cell types have receptors for the hormone,
but whereas hepatocytes contain glycogen and the glycogen-
metabolizing enzyme that is stimulated by epinephrine, adipocytes
contain neither.

s*Adipocytes respond to epinephrine by releasing fatty acids from
triacylglycerols and exporting them to other tissues.



*Three factors account for the extraordinary sensitivity of signal
transduction:
» the high affinity of receptors for signal molecules,

» cooperativity (often but not always) in the ligand-receptor
interaction, and

» amplification of the signal by enzyme cascades.
s The affinity between signal (ligand) and receptor can be expressed as

the dissociation constant Kd, commonly 101 M or less—meaning that
the receptor detects picomolar concentrations of a signal molecule.



s*Cooperativity in receptor-ligand interactions results in large changes in
receptor activation with small changes in ligand concentration.

s»Amplification results when an enzyme associated with a signal
receptor is activated and, in turn, catalyzes the activation of many
molecules of a second enzyme, each of which activates many molecules
of a third enzyme, and so on, in a so-called enzyme cascade.
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s*Modularity of interacting signaling proteins allows a cell to mix and
match a set of signaling molecules to create complexes with different
functions or cellular locations.

**The sensitivity of receptor systems is subject to modification.
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*When a signal is present continuously, desensitization of the receptor
system results; when the stimulus falls below a certain threshold, the
system again becomes sensitive.
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A final noteworthy feature of signal-transducing systems is integration,
the ability of the system to receive multiple signals and produce a unified
response appropriate to the needs of the cell or organism.

s Different signaling pathways converse with each other at several levels,
generating complex cross talk that maintains homeostasis in the cell and the
organism.



¢ Cesitli sinyal sistemleri incelendiginde bazi ortak 6zelliklere sahip olduklar
gorulebilir; bir sinyal reseptor ile etkilesime gecer, aktif hale gecen reseptor
hiicresel mekanizmalari baslatir ve bir ikincil haberci veya hticresel protein
aktivistiesinde degisiklik meydana getirir, hlcrenin metabolik aktivitesi
degisir ve sinyal iletimi sona erer.

**To illustrate these general features of signaling systems, we will look at
examples of six basic receptor types:

1. G protein—coupled receptors that indirectly activate (through GTP-
binding proteins, or G proteins) enzymes that generate intracellular second
messengers. This type of receptor is illustrated by the B-adrenergic receptor
system that detects epinephrine (adrenaline).

2. Receptor tyrosine kinases, plasma membrane receptors that are also
enzymes. When one of these receptors is activated by its extracellular
ligand, it catalyzes the phosphorylation of several cytosolic or plasma
membrane proteins. The insulin receptor is one example; the receptor for
epidermal growth factor (EGFR) is another.
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3. Receptor guanylyl cyclases, which are also plasma membrane receptors
with an enzymatic cytoplasmic domain.

**The intracellular second messenger for these receptors, cyclic guanosine
monophosphate (cGMP), activates a cytosolic protein kinase that
phosphorylates cellular proteins and thereby changes their activities.

4. Gated ion channels of the plasma membrane that open and close
(hence the term “gated”) in response to the binding of chemical ligands or
changes in transmembrane potential.

**These are the simplest signal transducers. The acetylcholine receptor ion
channel is an example of this mechanism.

**5. Adhesion receptors that interact with macromolecular components of
the extracellular matrix (such as collagen) and convey instructions to the
cytoskeletal system about cell migration or adherence to the matrix.

*»Integrins illustrate this general type of transduction mechanism.
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**6. Nuclear receptors that bind specific ligands (such as the hormone
estrogen) and alter the rate at which specific genes are transcribed and
translated into cellular proteins.

s*Steroid hormones function through mechanisms intimately related to the
regulation of gene expression.
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**6. Nuclear receptors that bind specific ligands (such as the hormone
estrogen) and alter the rate at which specific genes are transcribed and
translated into cellular proteins.
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G Protein—Coupled Receptors and Second Messengers

s As their name implies, G protein—coupled receptors (GPCRs) are receptors
that are closely associated with a member of the guanosine nucleotide—
binding protein (G protein) family.

**Three essential components define signal transduction through GPCRs: a
plasma membrane receptor with seven transmembrane helical segments, a
G protein that cycles between active (GTPbound) and inactive (GDP-bound)
forms, and an effector enzyme (or ion channel) in the plasma membrane
that is regulated by the activated G protein.

**The G protein, stimulated by the activated receptor, exchanges bound
GDP for GTP, then dissociates from the occupied receptor and binds to the
nearby effector enzyme, altering its activity. The activated enzyme then
generates a second messenger that affects downstream targets.

**The human genome encodes about 350 GPCRs for detecting hormones,
growth factors, and other endogenous ligands, and perhaps 500 that serve
as olfactory (smell) and gustatory (taste) receptors. -
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[.1:IERPEER Some Signals That Use cAMP as

Second Messenger

Corticotropin (ACTH)
Corticotropin-releasing hormone (CRH)
Dopamine [Dy, D]

Epinephrine (B-adrenergic)
Follicle-stimulating hormone (FSH)
Glucagon

Histamine [Ha]

Luteinizing hormone (LH)
Melanocyte-stimulating hormone (MSH)
Odorants (many)

Parathyroid hormone

Prostaglandins E,, E; (PGE,, PGE,)
Serotonin [5-HT-1a, 5-HT-2]
Somatostatin

Tastants (sweet, bitter)
Thyroid-stimulating hormone (TSH)
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**A second broad class of GPCRs are coupled through a G protein to a
plasma membrane phospholipase C (PLC) that is specific for the membrane
phospholipids phosphatidylinositol 4,5-bisphosphate, or PIP2.

*When one of the hormones that acts by this mechanism binds its specific
receptor in the plasma membrane, the receptor-hormone complex catalyzes
GTP-GDP exchange on an associated G protein, Gq, activating it in much the
same way that the B-adrenergic receptor activates Gs.

**The activated Gqg activates the PIP2-specific PLC, which catalyzes the
production of two potent second messengers, diacylglycerol and inositol
1,4,5-trisphosphate, or IP3.

[\:IVB V2R Some Signals That Act through Phospholipase C, IP;, and Ca’*

Acetylcholine [muscarinic M,] Gastrin-releasing peptide Platelet-derived growth factor (PDGF)
o -Adrenergic agonists Glutamate Serotonin [6-HT-1c]

Angiogenin Gonadotropin-releasing hormone (GRH) Thyrotropin-releasing hormone (TRH)
Angiotensin II Histamine [H,] Vasopressin

ATP [Py, Py Light (Drosophila)

Auxin Oxytocin
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FIGURE 12-10 Hormone-activated phospholipase C and IPs. Two intra-
cellular second messengers are produced in the hormone-sensitive
phosphatidylinositol system: inositol 1,4,5-trisphosphate (IP3) and
diacylglycerol are cleaved from phosphatidylinositol 4,5-bisphosphate
(PIP,). Both contribute to the activation of protein kinase C. By raising
cytosolic [Ca’*], IP; also activates other Ca®*-dependent enzymes; thus
Ca’* also acts as a second messenger.
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**Receptor Tyrosine Kinases

**The receptor tyrosine kinases (RTKs), a large family of plasma membrane
receptors with intrinsic protein kinase activity, transduce extracellular
signals by a mechanism fundamentally different from that of GPCRs.

**RTKs have a ligand-binding domain on the extracellular face of the plasma
membrane and an enzyme active site on the cytoplasmic face, connected by

a single transmembrane segment.

**The cytoplasmic domain is a protein kinase that phosphorylates Tyr
residues in specific target proteins—a Tyr kinase.

**The receptors for insulin and epidermal growth factor are prototypes for
this group.
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FIGURE 12-16 Insulin action on glycogen synthesis and GLUT4 move- of the glucose transporter GLUT4 to the plasma membrane, and the
ment to the plasma membrane. The activation of PI3 kinase (PI13K) by activation of glycogen synthase.

phosphorylated IRS-1 signals (through protein kinase B, PKB) movement
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**Receptor Guanylyl Cyclases, cGMP, and Protein Kinase G

**Guanylyl cyclases are receptor enzymes that, when activated, convert GTP
to the second messenger cyclic GMP (cGMP).

*Many of the actions of ¢cGMP in animals are mediated by cGMP-
dependent protein kinase, also called protein kinase G (PKG).

+**On activation by cGMP, PKG phosphorylates Ser and Thr residues in target
proteins.

**Cyclic GMP carries different messages in different tissues. In the kidney
and intestine it triggers changes in ion transport and water retention; in
cardiac muscle (a type of smooth muscle) it signals relaxation; in the brain it
may be involved both in development and in adult brain function.

**Guanylyl cyclase in the kidney is activated by the peptide hormone atrial
natriuretic factor (ANF), which is released by cells in the cardiac atrium

when the heart is stretched by increased blood volume.
22



+*Gated lon Channels

s Certain cells in multicellular organisms are “excitable”: they can detect an
external signal, convert it into an electrical signal (specifically, a change in
membrane potential), and pass it on.

*»Excitable cells play central roles in nerve conduction, muscle contraction,
hormone secretion, sensory processes, and learning and memory.

**The excitability of sensory cells, neurons, and myocytes depends on ion
channels, signal transducers that provide a regulated path for the
movement of inorganic ions such as Na, K, Ca2, and Cl across the plasma
membrane in response to various stimuli.

**These ion channels are “gated”: they may be open or closed, depending
on whether the associated receptor has been activated by the binding of its
specific ligand (a neurotransmitter, for example) or by a change in the
transmembrane electrical potential.
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FIGURE 12-26 Role of voltage-gated and ligand-gated ion channels in
neural transmission. Initially, the plasma membrane of the presynaptic
neuron is polarized (inside negative) through the action of the electro-
genic Na™K* ATPase, which pumps out 3 Na™ for every 2 K¥ pumped in
(see Fig. 12-25). @ A stimulus to this neuron (not shown) causes an
action potential to mowve along the axon (blue arrow), away from the cell
body. The opening of a voltage-gated Na™ channel allows Na™ entry,
and the resulting local depolarization causes the adjacent Na™ channel
to open, and so on. The directionality of movernent of the action poten-
tial is ensured by the brief refractory period that follows the opening of
each voltage-gated Ma™ channel. @ A split second after the action
potential passes a point in the axon, voltage-operated K™ channels open,
allowing K™ exit that brings about repolarization of the membrane (red
arrow), to make it ready for the next action potential. (For clarity, Na™
channels and K channels are drawn on opposite sides of the axon; both
types of channels are uniformly distributed in the axanal membrane.) €©
When the wave of depolarization reaches the axon tip, voltage-gated
Ca’" channels open, allawing Ca’ " entry. @ The resulting increase in
internal [Ca®'] triggers exocytic release of the neuratransmitter acetyl-
chaline into the synaptic cleft. @ Acetylcholine binds to a receptor an
the postsynaptic neuron (or myocyte), causing its ligand-gated ion
channel ta open. @ Extracellular Na* and Ca®" enter through this chan-
nel, depolarizing the postsynaptic cell. The electrical signal has thus
passed to the cell body of the postsynaptic neuron (or myocyte) and will
move along its axon to a third neuron (or a myocyte) by this same
sequence of events.
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move along its axon to a third neuron (or a myocyte) by this same
sequence of events.
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*»*Integrins: Bidirectional Cell Adhesion Receptors

**Integrins are proteins of the plasma membrane that mediate the adhesion
of cells to each other and to the extracellular matrix, and carry signals in
both directions across the membrane.

**The mammalian genome encodes 18 different a subunits and 8 different
B subunits, which are found in a range of combinations with various ligand-
binding specificities in various tissues.

s*Each of the 24 different integrins found thus far seems to have a unique
function.

**Because they can inform cells about the extracellular neighborhood,
integrins play crucial roles in processes that require selective cell-cell
interactions, such as embryonic development, blood clotting, immune cell
function, normal differentiation, and tumor growth and metastasis.
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**Regulation of Transcription by Nuclear Hormone Receptors

**The steroid, retinoic acid (retinoid), and thyroid hormones form a large
group of hormones (receptor ligands) that exert at least part of their effects
by a mechanism fundamentally different from that of other hormones: they
act in the nucleus to alter gene expression.

*»*Steroid hormones (estrogen, progesterone, and cortisol, for example), too
hydrophobic to dissolve readily in the blood, are transported on specific
carrier proteins from their point of release to their target tissues.

**In target cells, these hormones pass through the plasma membrane by
simple diffusion and bind to specific receptor proteins in the nucleus.

s*Steroid hormone receptors with no bound ligand (aporeceptors) often act
to suppress the transcription of target genes.

**Hormone binding triggers changes in the conformation of a receptor
protein so that it becomes capable of interacting with specific regulatory
sequences in DNA called hormone response elements (HREs), thus altering
gene expression. v
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FIGURE 12-37 Light-induced hyperpolarization of rod cells. The rod
cell consists of an outer segment, filled with stacks of membranous
disks (not shown) containing the photoreceptor rhodopsin, and an
inner segment that contains the nucleus and other organelles (not
shown). The inner segment forms a synapse with interconnecting neu-
rons (Fig. 12-36). Cones have a similar structure. ATP in the inner seg-
ment powers the Na“K* ATPase, which creates a transmembrane elec-
trical potential by pumping 3 Na™ out for every 2 K™ pumped in. The
membrane potential is reduced by the inflow of Na* and Ca’* through

cGMP-gated cation channels in the outer-segment plasma membrane.
When rhodopsin absorbs light, it triggers degradation of cGMP (green
dots) in the outer segment, causing closure of the ion channel. Without
cation influx through this channel, the cell becomes hyperpolarized.
This electrical signal is passed to the brain through the ranks of neurons
shown in Figure 12-36.
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Odorant (O) arrives
at the mucous layer
and binds directly to
an olfactory receptor
(OR) or to a binding
protein (BP) that
carries it to the OR.

© Activated OR

catalyzes GDP-GTP
exchange on a

G protein (Ggy),
causing its
dissociation

into a and B.

G,-GTP activates
adenylyl cyclase,
which catalyzes
cAMP synthesis,
raising [cAMP].
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Dendrite

cAMP-gated cation
channels open. Ca?
enters, raising
internal [CaZ*].

o

G,s, hydrolyzes GTP to

GDP, shutting itself off. Cyclic
AMP PDE hydrolyzes cAMP.
Receptor kinase phosphorylates
OR, inactivating it. Odorant

is removed by metabolism.
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affinity of the cation
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lowering the sensitivity
of the system to odorant.
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G Sweet-tasting e Gustducin a subunit
molecule (5) binds to activates adenylyl
sweet-taste receptor (SR), cyclase (AC) of the
activating the G protein apical membrane,
gustducin (Gg ). raising [cAMP].

Taste cell

FIGURE 12-42 Transduction mechanism for sweet tastants.

PKA, activated by cAMP,
phosphorylates a K* channel in

the basolateral membrane, causing
it to close. The reduced efflux of K*
depolarizes the cell sending an
electrical signal to the brain.
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